YP官网

资讯

YP官网示优,优品至上。

国产傅里叶红外光谱仪生产(进口傅里叶红外光谱仪)

YP官网示优官方账号 2023-02-08 资讯 2665 views 0

今天给朋友们分享一下有关国产傅里叶红外光谱仪生产的知识,其中当然也会对进口傅里叶红外光谱仪进行一部分的介绍,加入能碰巧解决你现在遇到的困难,不要忘了关注本站,那我们现在开始吧!

本文目录一览:

楔形窗片哪有?

有楔形窗片的厂家有昆山莱柏仪器设备有限公司、深圳维尔克斯光电有限公司、福州美扬光电有限公司、天津恒创立达科技发展有限公司、武汉特光科技有限公司。

1、深圳维尔克斯光电有限公司

深圳维尔克斯光电有限公司是光电测试设备,激光器,光学透镜及配件的优良贸易批发商,竭诚提供全新的Holoor 激光应用DOE 衍射光学元件,高性价比激光防护镜NOIR、Thorlabs、微米级激光光斑分析仪、楔形窗片、微米光斑能量测量等系列产品。

2、福州美扬光电有限公司

福州美扬光电有限公司主要生产销售激光晶体和光学元器件;是一家快速发展的高新科技公司。主要产品包括:KTP倍频晶体、YVO4契角片、ND:YVO4激光片,格兰偏振棱镜、楔形窗片、高精度窗片、高精度棱镜、激光反射镜、偏振分光棱镜和KTP+ND:YVO4(DPM)等产品。

3、天津恒创立达科技发展有限公司

天津恒创立达科技发展有限公司是傅里叶红外光谱仪,红外分光光度计,药典仪器的优良生产制造厂家,竭诚提供全新优良的WD-2A药物稳定性检查仪,恒创立达RBY-4B融变时限仪,楔形窗片,YB-2A澄明度测试仪304不锈钢等系列产品。

4、武汉特光科技有限公司

武汉特光科技有限公司是锗窗口,锗透镜,硅窗口的优良生产制造厂家,竭诚提供全新优良的远红外光学用高透过率和精度的氟化钙窗口片,高功率激光用聚焦镀增透膜硒化锌透镜,楔形窗片,光学透镜等系列产品。

5、昆山莱柏仪器设备有限公司

昆山莱柏仪器设备有限公司是美国PE石墨管,美国PE元素灯,岛津氘灯的优良贸易批发商,竭诚提供全新优良的铋黄铜光谱标样洛铜合金标样,原生镁光谱标样E4231镁合金标样,楔形窗片,含P的铸铝光谱标样E3132a铝合金标样等系列产品。

说明傅里叶红外光谱仪与色散型红外光谱仪的区别

红外光谱[1](infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。

量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。

研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。

红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。

红外识谱歌

红外可分远中近,中红特征指纹区,

1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;

单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。

1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;

四氢只有750,二氢相邻830;

间二取代出三峰,700、780,880处孤立氢

醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔醇位不同。

1050伯醇显,1100乃是仲,

1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,

1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,

环氧乙烷有三峰,1260环振动,

九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,

开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,

920,钝峰显,羧基可定二聚酸、

酸酐千八来偶合,双峰60严相隔,

链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,

1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,

1220乙酸酯,1250芳香酸。

1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;

N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;

碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,

叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,

仲胺盐、叔胺盐,2700上下可分辨,

亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

钝盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐。

1100是硫酸根,1380硝酸盐,

1450碳酸根,一千左右看磷酸。

硅酸盐,一峰宽,1000真壮观。

勤学苦练多实践,红外识谱不算难。

红外光谱发展史

雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。

从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。

1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。

红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。

现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。

红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

国产可见分光光度计品牌有那些?

上海精科--光度计系列

上海精密科学仪器-仪器的前身是上海天平仪器厂和上海第二天平仪器厂,目前是国内历史最悠久、且最具实力的专业生产天平仪器及实验室仪器的高新技术企业。

上海美谱达--光度计系列

上海美谱达仪器有限公司坐落于上海市西部的飞霞工业区,是集实验室设备研发、制造、销售、服务为一体的专业化高新技术企业。美谱达采用当今世界光谱仪器最新的设计理念,为用户提供一流的产品。作为公司现阶段主推产品的 紫外/可见分光光度计是实验室常规分析设备,它利用光谱分析方法对样品进行定性、定量分析,在有机化学、无机化学、生物化学、生命科学、药品分析、食品检验、医药卫生、环保、地质、冶金、石油、机械、商检和农业等各个领域都有广泛的应用。

美谱达在光度计的方法学应用、产品机械结构、光学设计、电气应用和软件开发等方面不断开拓创新,相继推出UV/Vis-1系列紫外/可见分光光度计,UV-3系列扫描型紫外/可见分光光度计,UV-6系列双光束扫描型紫外/可见分光光度计,以满足各类实验室对分光光度计产品的不同需求,受到国内外用户的普遍好评。

上海光谱--光度计系列

上海光谱仪器有限公司(“上海光谱”)成立于1999年初,是当今中国分析仪器行业主要研发与生产制造商之一,同时也是“中国制造”的分析仪器在国际市场的主要供应商。

“上海光谱”还与国内多家著名重点大学、中科院所、国家重点实验室以及多名两院院士、知名教授、分析仪器行业的知名专家建立了良好的合作关系。公司还有一个由院士、博士生导师和有着丰富经验专家组成的顾问组,为公司的发展方向,技术进步和企业管理提供决策咨询。

上海恒平--光度计系列

上海恒平科学仪器有限公司,是上海市高新技术企业,教育部创新科学仪器工程研究中心产业化基地,专业致力于各类科学仪器的研发、制造和销售。

天津港东--光度计系列

天津港东科技发展股份有限公司于1999年注册成立,坐落于天津市华苑产业园区鑫茂科技园内,是一家专业从事物理实验仪器和现代分析仪器研发、生产和销售的高新技术企业,自成立以来,秉承“以品质为保证,以自主创新为先导,为客户创造价值”的核心理念,稳健经营,积极进取,逐步迈向业界知名的现代化上市公司行列。

公司拥有完善的科研创新体系和一大批具有专业知识和高水平研发能力的教授、博士、硕士等组成的科研团队,在高等院校物理实验仪器与现代分析仪器领域的科研创新上取得了瞩目成绩,拥有众多知识产权和专利,获得多次多项科技奖以及科技型中小企业技术创新资金专项拨款。多功能光栅光谱仪、光学平台等十四项科技产品在“世行贷款高等教育改革项目”、“师范教育发展项目”中中标。傅里叶变换红外光谱仪、红外分光光度计、紫外可见分光光度计、荧光分光光度计等均获国家计量认证。迈克尔逊和法布里-珀罗两用干涉仪、自动椭圆偏振测厚仪、热膨胀实验装置等获得国家专利。激光拉曼光谱仪、结石红外光谱自动分析系统等产品填补了国内空白。

上海天美--光度计系列

上海天美是由创建于1994年的上海天美科学仪器有限公司和2006年成立的上海天美生化仪器设备工程有限公司组成,它们都是天美(控股)有限公司的独资子公司。天美(控股)有限公司是在新加坡上市的从事分析仪器和生化仪器的研发、生产、销售、服务的专业公司,总部设于香港。

上海棱光--光度计系列

上海棱光技术有限公司是以研发、制造、销售分析仪器、医疗与生命科学仪器及光学仪器并提供咨询和服务的民营公司,科技人员比例达60%,具有上海市质量技术监督局颁发的铸造计量器具许可证和上海市药品监督局颁发的医疗器械生产销售许可证,有近半个世纪生产开发光谱及其它分析仪器的经验,产品有:S20系列可见分光光度计、S50系列紫外可见分光光度计、F90系列荧光分光光度计、S400系列近红外分析仪、W系列物理光学仪器、S61低密度芯片系列、S63 PCR扩增仪等。

上海菁华--光度计系列

上海菁华科技仪器有限公司、上海菁海仪器有限公司是集开发研制、生产制造各类紫外可见分光光度计、各类电子天平、机械天平及水分仪,并经销各类实验室仪器设备的综合性公司。

上海凤凰--光度计系列

上海凤凰光学科仪有限公司是凤凰光学集团有限公司麾下的合资企业,主要从事中高端科学仪器的研发、生产和销售。凤凰光学集团是一个有着43年历史的国家重点高新技术企业,中国光学行业第一家上市公司,也是我国光学行业中最大型的光学仪器生产企业。主要生产光学元件、显微镜、照相机、光学设备、影视机械等系列产品,具有雄厚的光学加工、精密注塑、模具制造、表面装饰等科研和生产加工能力。

上海元析--光度计系列

上海元析仪器有限公司是一家有着多年设计制造经验、专业从事实验室分析类仪器研发、生产、销售和服务为一体的高新技术企业。公司有着团结、奋进的工作队伍和积极进取的工作热情;在先进管理理念的指导下,不断吸收国内外先进技术理念和经验,锐意创新,相继开发出具有自主知识产权的分析类仪器。可见分光光度计、紫外可见分光光度计、生物核酸蛋白分析仪逐渐成为公司的主打产品,广泛应用于生物、化学、环保、食品、 冶金、电力、电子等诸多领域。

北京普析通用--光度计系列

北京普析通用仪器有限责任公司创立于1991年,是从事科学仪器研制、开发、生产的高科技企业。现有职工800多人,其中科技人员占职工总数的三分之一。经过十余年的艰苦奋斗和不断创新,现已成长为同行业的领先企业。产品包括光谱分析仪、色谱分析仪、水质分析仪等几大系列数十种产品,从紫外可见分光光度计、原子吸收分光光度计、血液元素分析仪,在线水质分析仪、快速便携式水质分析仪、砷形态分析仪到X射线衍射仪、X射线荧光分析仪等齐全的产品群,并开发出拥有自主知识产权的系列分析测试软件。2003年普析通用被中国企业评价协会评为“中国500家成长型中小企业”。2004年先后被中国新闻社评价中心评为“中国最具竞争力中小企业500强”;被中国中小企业国际合作协会、国家统计局工业交通统计司评为“中国制造业1000家最具成长性中小企业”;被北京市工商局连续三年评为北京市“守信企业”。

上海长方--光度计系列

上海长方致力于先进的精密光学制造技术和计算机图象处理技术的研发.上海长方从事发展尖端光学、精密机械、计算机相结合的(光、机、电一体化)光学仪器开发和销售。

5. 傅里叶变换红外光谱仪的基本结构,有哪些特点?简述工作原理?

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。

红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于分子的结构特征。这就是红外光谱测定化合物结构的理论依据。

红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。

傅里叶红外光谱仪由光源、迈克尔逊干涉仪、样品池、检测器和计算机组成,由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。当上述干涉光通过样品时某一些波长的光被样品吸收,成为含有样品信息的干涉光,由计算机采集得到样品干涉图,经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

用傅立叶红外仪做试验,怎样才能定量的检测

FTIR-650傅里叶红外光谱仪是天津港东科技发展有限公司集近十几年开发生产红外分光光度计的经验基础上,并积极引进国外先进技术而研制开发的。它结合了当今最新的光学、电子学、材料科学和人工智能技术

今天的国产傅里叶红外光谱仪生产有关的说明就先聊到这里啦,想指导更多有关于进口傅里叶红外光谱仪的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624
YP官网