YP官网

资讯

YP官网示优,优品至上。

傅里叶红外光谱分析文献(傅里叶红外光谱图分析)

YP官网示优官方账号 2023-02-12 资讯 2707 views 0

今天给朋友们分享一下有关傅里叶红外光谱分析文献的知识,其中当然也会对傅里叶红外光谱图分析进行一部分的介绍,加入能碰巧解决你现在遇到的困难,不要忘了关注本站,那我们现在开始吧!

本文目录一览:

帮忙分析一下这三张傅里叶红外光谱图,下面两张有一张是苯甲酸钠,还有一张是对羟基苯甲酸乙脂!!!

处理红外谱图看恶 3000 附近甲基、亚甲基 苯峰应该连续几峰竟1300峰 1000C-O峰知道事

江苏富铁坡缕石的结晶化学研究

尹琳1,2李真1郑意春1

(1.南京大学地球科学系,南京 2100932;2.江苏省凹土工程技术研究中心,南京 210093)

摘要 坡缕石晶体结构中的铁对其工业上的应用有着重要的影响,而江苏盱眙一带的坡缕石含有相对较高的铁含量。本文选取了盱眙富铁坡缕石样品进行研究,样品的平均结构式为(Si7.48Al0.52)(Al1.24Fe0.94Mg1.77Ti0.03□1.02)O20(OH)2(OH2)4。穆斯堡尔谱测试结果确定了铁离子以Fe3+占据了坡缕石八面体层中的内八面体位置。根据透射电镜能谱以及红外光谱分析,所研究样品显示了明显的二八面体特征。AlFe3+□OH和Fe3+Fe3+□OH振动的出现进一步确认了铁离子占据八面体层的内部位置[1~27]。

关键词 富铁坡缕石;八面体;穆斯堡尔谱;红外光谱。

第一作者简介:尹琳,南京大学地球科学系教授,兼任江苏省凹土工程技术研究中心副主任。电话:013305184358;E-mail:yinlin@nju.edu.cn。

坡缕石又名凹凸棒石,是一种层链状硅酸盐矿物。坡缕石的理想结构式为

中国非金属矿业

一般认为只有4/5的八面体位置被阳离子占据,而八面体层的中间位置(M1 位)常常以空位存在。还有学者进一步提出边缘八面体位置(M3位)常常被Mg2+离子占据。坡缕石被认为是兼有二八面体和三八面体性质的粘土矿物,红外光谱的研究也确证了这一特点。

坡缕石中的三价铁降低了坡缕石的白度,而且也影响了坡缕石的应用,铁的占位对于矿物的进一步研究具有重要的指示作用。穆斯堡尔谱数据认为70%的铁离子占据在八面体层的边缘位置。红外吸收光谱提出大部分铁占据在内部的M2位置。坡缕石样品的晶体结构还缺乏统一的认识,需要具体样品具体研究。

一、材料和实验方法

(一)材料

苏皖交界地区玄武岩比较发育,凹凸棒粘土矿床则广泛分布于玄武岩夹层中。坡缕石粘土在苏皖边境的古近-新近纪地层中呈广泛的带状分布。这一地区坡缕石储量巨大,矿点多,其化学性质也不尽相同。这一地区的坡缕石往往和石英、蒙脱石、蛋白石等矿物共生。

本文所研究的坡缕石样品采自盱眙的马腰山矿点。该矿点的样品呈现突出的富铁性质。原土常含有约5%的石英以及10%的非晶态物质,含有极少的蒙脱石。

(二)方法

原土样品(Pal-o)被提纯,提纯步骤如下:样品磨至400目以下,然后加入蒸馏水中,水土比为100∶1。混合均匀后加入1%(wB)聚丙烯酸钠(PAAS),同时在超声波中振荡。最后待胶体稳定后,除去沉淀,将胶体离心分离。在烘箱中110℃烘干得到纯坡缕石样品。

利用扫描电镜以及透射电镜,研究了坡缕石的纤维分布形态。透射电镜型号为JEOL JEM-2010,工作电压80 kV,装备有JED-2300T EDX型能谱仪,扫描电镜型号为LEO1530VP。

矿物物相分析采用了Rigaku D/max III-a型X衍射分析仪,工作条件为:铜靶,40 kV,40 mA;扫描范围3°~60°,步长0.02°。

57Fe穆斯堡尔谱由南京大学物理系自行组装的穆谱仪进行测试。工作条件为512 道、± 4.2mm/s、57Co/Pd源。结果采用MössWinn 3.0软件进行拟和。中心位移以α-Fe为基准。

傅里叶红外光谱(FTIR)在南京大学分析中心的Nexus 870 FTIR仪上进行分析。测试范围为400~4000 cm-1。

二、结果和讨论

(一)矿物结构形态

根据XRD分析结果(图1 和图2),原土中主要杂质是石英-蛋白石(图2)。透射和扫描电镜显示;①坡缕石中的蛋白石样品以“蛋白石球”形态生长在坡缕石表面(图2a);②坡缕石的纤维长度在0.5~2μm之间(图2b);③杂质矿物位于坡缕石纤维形成的束状结构中(图2c);④坡缕石纤维沿c轴方向生长(图2d)。

图1 富铁坡缕石原土(Pal-o) 和纯坡缕石(Pal-p)的X粉晶衍射图谱(Q=石英)

图2 马腰山样品的SEM以及TEM照片

(a)坡缕石粘土中的蛋白石球(Opal);(b) SEM镜下坡缕石的纤维形态;(c) TEM镜下可见纤维束状结构中的杂质(Impurity);(d)坡缕石纤维沿C轴方向排列

提纯后XRD图谱中的石英特征峰(0.3343nm)几乎消失,显示了可信的提纯效果(图1)。另外,TEM分析显示坡缕石纤维几乎是镜下能观察到的唯一矿物,表面杂质也基本被除去。当然,并不排除极少量的非晶态物质以及蒙脱石的存在。

TEM-EDS数据显示了即使是同一样品的坡缕石中不同纤维也具有变化的化学特征(表1)。马腰山样品的平均结构式为

中国非金属矿业

如表1,坡缕石四面体中的替代并不能被忽略,其四面体中每8个位置的Si,约有0.52个被Al3+替代。苏皖地区的坡缕石的四面体替代要明显高于其余样品。Galán & Carretero,1999年提出大多数坡缕石的化学特征介于二八面体和三八面体之间。而本文研究的样品每半个晶胞约含4个阳离子,显示了明显的二八面体特征。

表1 马腰山富铁坡缕石纯土的TEM-EDS分析结果

Pal-p样品显示明显的富铁特征,如表1,Pal-p样品每半个晶胞约含0.94个铁离子。其含铁量明显高于这一地区的其余样品。同时也高于García-Romero等人(2004)总结大量国外样品提出的平均每半个晶胞0.39个铁离子。Galán&Carretero 1999年总结了40多份样品的化学数据,最富铁的样品含0.87个铁离子。Fe3+替代了Al才导致坡缕石中Mg/Al大于1。根据这一论断以及表一所显示的低Al特征,Fe3+极有可能大量替代了八面体层中的Al才导致了此样品具有高铁低铝的特征。

图3 提纯富铁坡缕石的穆斯堡尔谱

表2 坡缕石的穆斯堡尔谱数据

注:ARG样品引自Augsburger等人(1998);Mt.F和Flor样品引自Heller-Kallai & Rozenson(1981)。

Γ表示对应峰的线宽;括号内数字表示末位误差范围。比率是F3+在八面体内部位和在八面体边缘位占据数量之比。

(二)穆斯堡尔谱研究

如图3所显示的Pal-p样品的穆谱数据,坡缕石并不含有针铁矿、磁铁矿以及赤铁矿等杂质,且铁都以Fe3+存在。其结构中应该含有两中铁的位置,分别对应谱图中的两套数据。在表1 中,两套数据显示了同质异能位移(I.S.)分别为0.35mm/s和0.37mm/s,表明铁以六配位的形势存在。铁离子的两种位置所占比例约为4∶1(表2)。Pal-p样品的其中一套数据显示了四极分裂值(Q.S.)为0.21mm/s.Heller-Kallai & Rozeson,1981年提出如此低的数据应该对应于八面体边缘的位置。另外一套数据的(Q.S.)值为0.50mm/s,认为这套数据应该对应内八面体的M2(顺位)位置。这套数据与先前研究的Flor样品非常相似,但是和其他在M1(反位)位含铁离子的样品数据相差较大,这也暗示了铁将和铝一起存在于M2位置。

穆谱数据显示大约21%的铁(每半个晶胞大约0.2个铁离子)占据内部八面体位置。这个比例和TEM-EDS数据是契合的:基于Mg将占据边缘的八面体位置,1.77个Mg将占据在边缘,空出约0.2个位置由铁来占据。

(三)红外光谱研究

位于911 cm-1和867 cm-1的两个峰,将它们分别指派给δ AlAl□OH and δ Al Fe3+□OH。在图4中,出现了类似两个峰,分别位于911 cm-1和865 cm-1。位于834 cm-1并指派给δ AlMg□OH的肩并没有在Pal-p的红外结果中出现。这表示没有Mg和Al一起存在于M2位置。位于823 cm-1的峰应该对应δFe3+Fe3+□OH,而Pal-p样品数据中也存在一个位于的822 cm-1峰。位于750 cm-1和800 cm-1之间的宽峰往往对应于燧石相或非晶态的其他含硅杂质,这些峰往往和δ-OH或δR-O重叠,难以分辨。400~600 cm-1和1000~1200 cm-1对应于粘土以及硅氧骨架结构的振动。

图4 提纯坡缕石Pal-p的FTIR的羟基弯曲振动区域

图5 提纯坡缕石Pal-p的FTIR的羟基伸缩振动区域

在羟基伸缩振动区域,出现了3616 cm-1,3581 cm-1和3552 cm-1三个强峰以及位于3404 cm-1的宽峰(图5)。先前研究中提出了类似的四个峰。

位于3616 cm-1的峰应该被指派给υ AlAl□OH。位于3550 cm-1和3410 cm-1的两个峰常常被认为是坡缕石中孔道边缘配位水和边缘阳离子的共同作用结果。但是Gionis等(2006)则提出位于3551 cm-1的峰应该归结于υ Fe3+Fe3+□OH振动,而且在逐步加热失水过程中,会偏移到3560 cm-1左右。考虑到他的结论也是基于富铁坡缕石的研究,所以将Pal-p样品红外结果中出现的3552 cm-1的峰指派给υ Fe3+Fe3+□OH应该更为合理。

位于3583 cm-1的峰应该是υ AlFe3+□OH 和配位水协同作用的结果。而在贫铁坡缕石样品中,3577~3592 cm-1范围内的峰要不就以肩的形式出现要不就甚至消失。而在Pal-p样品的红外结果中,存在位于3581 cm-1的峰,表明了υ AlFe3+□OH振动的存在。先前的研究认为Mg主要占据边缘的M3位置而Al主要占据内部M2位置。因此,在马腰山样品中未有υ RMg□OH形式的振动出现,表明Mg的确占据在边缘位置(图6b)。

一般认为,位于3680 cm-1的弱峰应该被指派给υ Mg3OH,但是Pal-p样品并没有显示出这个峰。联系到样品每半个晶胞平均有1.77(<2)个Mg离子,不会有多余的Mg占据到内部八面体位置和Al或者Fe形成振动组合。

图6 坡缕石八面体层中的阳离子分布图

(a) GÜven(1992年)提出的理论模型中的三种八面体位置;(b)马腰山富铁样品八面体层阳离子的可能分布

AlFe3+□OH和Fe3+Fe3+□OH的羟基振动组合表明Fe和Al占据了内部八面体的位置。而Pal-p样品中RR□OH振动的出现表明了具有二八面体特征。GÜven(1992)提出了坡缕石晶体结构的模型,认为Mg占据边缘位置;M2位置被Al或者Fe占据;M1位置是空位(图6a)。Pal-p样品的阳离子占据模式大体类似,不同之处在于有大约0.2个铁占据了边缘位置从而使边缘的占位趋于饱和(图6b)。

三、结论

通过研究了盱眙马腰山矿点的富铁坡缕石样品,根据化学分析,其每半个结构单元中的5个位置有4个位置被阳离子占据,其中平均含有0.94个铁离子。铁含量要明显高于苏皖其他地区以及国外已经研究的样品。

穆斯堡尔谱表明铁在坡缕石中以Fe3+的形式存在,并没有Fe2+出现。另外穆谱分解出的两套数据对应于两种铁的位置(M2和M3),其比例约为4∶1,大部分铁占据内部八面体位置。

AlFe3+□OH和Fe3+Fe3+□OH振动的出现进一步表明有铁占据了内部八面体位置。此外红外分析和化学分析也表明马腰山样品属于二八面体型坡缕石。

参考文献

[1]Augsburger M S,Predregosa J C,Strasser E,Perino E&Mercader R C.FTIR and Mössbauer investigation of a substituted palygorskite:Silicate with a channel structure.Journal of Physics and Chemistry of Solids,1998,59:175-185

[2]Bailey S W.Structure of layer silicates:pp.2—115 in:Crystal Structures of Clay Minerals and their X-ray Identification(G.W.Brindley and G.Brown,editors) .(M) 5,1984,Mineralogical Society,London

[3]Blanco C,Herrero J,Mendioroz S&Pajares J A.Infrared studies of surface acidity and reversible folding in palygorskite.Clays and Clay Minerals,1988,36:659-673

[4]Blanco C,Gonzalez F,Pesquera C,Benito I,Mendioroz S&Pajares J A.Difference between one aluminic palygorskite and another magnesic by infrared spectroscopy.Spectroscopy Letters,1989,22:659-673

[5]Bradley W F.The structural scheme of attapulgite.American Mineralogist,1940,25:405-410

[6]蔡元峰,薛纪越.安徽官山两种坡缕石粘土的成分与红外吸收光谱.矿物学报,2001,21(3):323-329

[7]Cai Y &Xue J.Dissolution behavior and dissolution mechanism of palygorskite in HCl solution.Progress in Natural Science,2004,14:235-240

[8]Chahi A,Petit S&Decarreau A.Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite.Clays and Clay Minerals,2002,50:306-313

[9]Drits V A & Aleksandrova V A.The crystallochemical nature of palygorskite.Zapiske.Vsesoyuznogo Mineralogecheskogo Obtechestva,1996,95:551-560

[10]Drits V A & Sokolova G V.Structure of palygorskite.Soviet Physica Crystallographiya,1971,16:183-185

[11]Farmer V C.The layer silicates.pp.331—364 in:The infrared spectra of minerals.(M) 4,1974,Mineralogical Society,London

[12]Galán E & Carretero I.A new approach to composition limites for sepiolite and palygorskite.Clays and Clay Minerals,1999,47:399-409

[13]García-Romero E,Suárez M&Bustillo M A.Characteristics of a Mg-palygorskite in Miocene rocks,Madrid Basin(Spain) .Clays and Clay Minerals,2004,52:484-494

[14]Suárez M & García-Romero E.FTIR spectroscopic study of palygorskite:Influence of the composition of the octahedral sheet.Applied Clay Science,2006,31:154-163

[15]Gionis V,Kacandes G H,Kastritis I D & Chryssikos G D On the structure of palygorskite by mid-and near-infrared spectroscopy.American Mineralogist,2006,91:1125-1133

[16]GÜven N.The coordination of aluminum ions in the palygorskite structure.Clays and Clay Minerals,1992,40:457-461

[17]Heller-Kallai L & Rozenson I.The use of MÖssbauer spectroscopy of iron in clay mineralogy.Phys.Chem.Minerals,1981a,7:223-238

[18]Heller-Kallai L & Rozeson I.MÖssbauer studies of palygorskite and some aspects of palygorskite mineralogy.Clays and Clay Minerals,1981b,29:226-232

[19]Khorami J&Lemieux A.Comparison of attupulgites from different sources using TG/DTG and FTIR.Thermochimica Acta,1989,138:97-105

[20]Long D G F,McDonald A M & Yi F.Palygorskite in palaeosols from the Miocene Xiaocaowan Formation of Jiangsu and Anhui Provinces,PR.China.Sedimentary Geology,1997,112:287-285

[21]Madejová J& Komadel P.Baseline studies of the Clay Minerals Society source clays:Infrared studies.Clays and Clay Minerals,2001,49:410-432

[22]Russell J D & Fraser A R.Infrared methods.Pp.11—67 in:Clay Mineralogy:Spectroscopic and Chemical Determinative Methods(M.J.Wilson,editor) .1994,Champman & Hall,London

[23]Serna C,VanScoyoc G E & Ahlrichs J L Hydroxyl groups and waters in palygorskite.American Mineralogist,1997,62:784-792

[24]Van Scoyoc G E,Serna C&Ahlrichset J L Structural changes in palygorskite during dehydration and dehydroxylation.American Mineralogist,1979,64:215-223

[25]Woessner D E.Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy.American Mineralogist,1989,74:203-215

[26]熊飞,尹琳,蔡元峰等.凹凸棒石粘土中坡缕石的内标法X衍射定量分析研究.高校地质学报,2005,11(3):453-458

[27]郑自立.中国坡缕石.北京:地质出版社,1997,26-45

Crystallo-chemistry of Fe-rich Palygorskite from Jiangsu Province

Lin Yin1,2,Li Zhen1,Zheng Yichun

(1.Department of Earth Science,Nanjing University,Nanjing 210093,China;2.Research Center of Engineering & Technology of Attapulgite,Nanjing 210093,China)

Abstract:Iron cations in the octahedral sheets interfere the industrial application of palygorskite clays.In this study,a palygorskite sample from Eastern China revealed its obvious iron-rich characters,iron content of which is remarkably higher than that of others.Structural formula of the Fe-rich palygorskite sample was established as(Si7.48Al0.52)(Al1.24Fe0.94Mg1.77Ti0.03□1.02) O20(OH)2(OH2)4.Mössbauer spectrum confirmed that iron ions occupy inner octahedral sites in the octahedral layers as trivalent Fe cations.Studied palygorskite sample revealed dioctahedral features according to structural formulae and FTIR data.Occurrences of AlFe3+□OH and Fe3+Fe3+□OH vibrations in the OH-stretching and bending regions also further confirmed that Fe ions occupy inner sites of octahedral layers in iron-rich palygorskite studied.

Key words:Fe-rich palygorskite,octahedral occupancy,Mössbauer,FTIR.

关于傅里叶红外

1.前者是不是你写错了,应该是FTIR difractive spectroscopy(傅里叶变换红外衍射光谱) 后者翻译就不说了吧

2.采用傅里叶变换是为了使图像分析简单化,一般的IR都采用了傅里叶变换

3.如果其他处理也能使图像分析简单化,将来可能会用于IR,目前貌似我也就见过这一种。

艾伯塔油砂/原油地球化学特征

艾伯塔油砂矿生产的原油产量自2002年起已超过加拿大年产油量的50%。配合勘探生产的需要,近年来我们围绕油砂的成因分析了大量的油砂岩心样品(部分样品情况参见表6-1)。下面根据这些样品的族组成特征、饱和烃和芳香烃生物标志物特征,探讨研

究区内高酸值油砂沥青的地球化学特征。

一、油砂沥青族组分特征原油和油砂沥青的族组分特征是反映原油油品好坏的重要标志之一。从表6-1中可以看出,可以正常生产的下白垩统Mannville组低酸值原油含有较多的饱和烃和芳香烃,而其他高酸值油砂沥青的饱和烃和芳香烃含量则相对减少,非烃的含量则相对增加,这可能主要与原油的生物降解程度有关。沥青质含量在这些样品中变化不大。

表6-1 艾伯塔油砂和相关原油样品族组成特征

图6-11 艾伯塔油砂沥青样品的总酸值分布与族组成的关系

Mannville组低酸值原油的饱和烃/芳烃比值较高,而高酸值油砂沥青的饱和烃/芳烃比值都比较低(表6-1)。总体看来,油砂沥青总酸值的增加与饱和烃和芳香烃含量的下降和非烃含量上升有一定关系,但与沥青质含量没有直接关系(图6-11)。

二、油砂沥青饱和烃生物标志物组成特征

利用饱和烃馏分中烷烃生物标志物可以判断油砂沥青有机质的来源、沉积环境、成熟度以及生物降解程度。通过对研究区原油和油砂的正构烷烃、支链烷烃、类异戊二烯烃以及各类的甾萜类化合物等生物标志物进行分析,可以获得高酸值油砂沥青的成因信息。

正构烷烃是非生物降解原油饱和烃馏分中的优势组分,而在生物降解油中它们往往是最先受影响的成分。图6-12展示了研究区原油和油砂沥青的饱和烃色谱图,从中可以清楚地区分出三类特征不同的饱和烃色谱图:①Mannville组低酸值原油,遭受轻微的生物降解,只有少量正构烷烃损失(图6-12A);②所有油砂沥青样品的饱和烃色谱图上正异构烷烃基本丧失,形成特征的鼓包,饱和烃色谱图上能够直接辨认的化合物主要是藿烷和甾烷生物标志物(图6-12B,C,D);③个别油砂沥青样品遭受严重生物降解,从而使得25-降藿烷成为饱和烃色谱图上强峰之一(图6-12D,样品#6741)。

图6-12A 艾伯塔代表性油砂沥青样品的饱和烃气相色谱图

图6-12B 艾伯塔代表性油砂沥青饱和烃气相色谱图(一)

图6-12B 艾伯塔代表性油砂沥青饱和烃气相色谱图(二)

图6-12C 艾伯塔代表性油砂沥青饱和烃气相色谱图

图6-12D 艾伯塔代表性油砂沥青饱和烃气相色谱图

图6-13和图6-14是所研究样品饱和烃馏分m/z191和217质量色谱图,反映样品中甾萜烷化合物分布。一般而言,海相碳酸盐源岩生成的原油相对富集三环萜烷。这些化合物的抗生物降解能力较强,在严重生物降解原油中,当甾烷和藿烷遭受破坏趋于消失或改变时,对三环萜烷几乎没有明显的影响。研究区采集的原油和油砂沥青样品总体上富含三环萜烷,其碳数分布范围在C19-C30之间,多数并不完整。它们的C21/C23三环萜烷比值也有一定的变化范围,但与原油生物降解的程度似乎没有明显的关系。

图6-13 艾伯塔代表性油砂沥青样品的饱和烃馏分m/z191质量色谱图(一)化合物1~6—C20~C25三环萜烷;7—Ts;8—Tm;9—25-降藿烷;10~12,14~17—C29~C35-17α(H)-藿烷;13—伽马蜡烷

图6-13 艾伯塔代表性油砂沥青样品饱和烃馏分m/z191质量色谱图(二)

图6-13 艾伯塔代表性油砂沥青样品的饱和烃馏分m/z191质量色谱图(三)

图6-14 艾伯塔代表性油砂沥青样品饱和烃馏分m/z217质量色谱图(一)甾烷化合物鉴定:1—C21;2—C22;3&4—20S&20R-13β,17α-C27;5&6—20S&20R-13β,17α-C29;7~10,11~14,15~18—C27,C29和C30正常甾烷

图6-14 艾伯塔代表性油砂沥青样品饱和烃馏分m/z217质量色谱图(二)

图6-14 艾伯塔代表性油砂沥青样品饱和烃馏分m/z217质量色谱图(三)

本区样品的甾藿烷系列化合物浓度和生标参数见表6-2~表6-4。从表中可以看出,原油的C29/C30藿烷比值分布范围是0.83~1.85之间。显然,在严重生物降解的沥青样品中,该比值相对较高。这说明生物降解过程对原油中不同碳数藿烷含量有一定的影响。但目前文献中对生物降解程度对藿烷系列化合物的影响尚有一定的争议。据Peters等(2005)研究,微生物降解藿烷沿着两种截然不同的路径:①侧链氧化;②脂肪环系统的改变。具体哪条路径在特定样品中占优势,取决于特定的细菌群落和环境条件。在GrandRapidsX06471油砂沥青中,正常藿烷系列化合物遭受严重降解而相对富集25-降藿烷;同时保存下来的长链藿烷以C35+异构体为主(图6-15)。以往人们将C35/C34藿烷的比值大于1.0作为碳酸盐岩或者强还原的沉积环境特征,但对于遭受过生物降解样品的解释可能需要慎重。绝对定量结果(图6-16)显示,原油中25-降藿烷浓度较低时,它与C30藿烷的浓度成正比;而当原油发生严重生物降解时,其浓度的增加是以“牺牲C30藿烷为代价”的。

表6-2 本区样品的藿烷系列化合物浓度(μg/g)

续表

表6-3 本区样品的甾烷系列化合物浓度(μg/g)

表6-4 本区样品的甾藿烷系列生物标志物参数

续表

图6-15 GrandRapids#X06471油砂沥青样品的饱和烃馏分m/z177和m/z191质量色谱图

图6-16 本区样品中25-降藿烷和C30藿烷浓度对比关系图

值得注意的是,在这次分析的所有艾伯塔油砂沥青和原油中,都含有伽马蜡烷,但它的含量普遍不高。这说明其源岩形成时有水体分层,但不具备高盐度的水体环境特征。与此同时,伽马蜡烷也可以在生物降解过程中相对富集,故它与常规藿烷的比值所反映的沉积水体条件可能要比实际情况要更显得封闭一些。

从图6-13可见,在没有遭受严重生物降解的原油和油砂沥青中,它们的甾烷分布极为相似,即单个短链甾烷(C21和C22甾烷)的强度稍大于C27-C29正常甾烷,重排甾烷低于正常甾烷,C27-C29正常甾烷呈特征的“V”型,而且含有相对丰富的C30-脱甲基甾烷,反映海相源岩特征。图6-17显示了本区样品的部分甾烷参数与甾烷浓度的对比关系,可见在生物降解过程中,重排甾烷浓度变化不大,而正常甾烷的绝对浓度明显降低。在C29重排甾烷/正常甾烷比值和C21+22甾烷占总甾烷的比例增加时伴随着甾烷浓度的降低,说明这些样品的生物降解程度较高,大量分子结构相对稳定的甾烷已经遭受破坏。

图6-17 本区样品部分甾-烷参数与甾烷浓度对比关系(C29-D/R是C29重排甾烷和C29正常甾烷比值;S/L为C21和C22甾烷占总甾烷的比例)

图6-18 本区原油/油砂沥青C29正常甾烷异构体比值与C29重排甾烷/正常甾烷比值关系图

生物降解是影响甾烷分布的重要因素之一,生物降解作用将优先从规则甾烷中去除20R的差向异构体,从而造成甾烷的异构体比值升高。图6-18为本区原油甾烷的异构体比值与C29重排甾烷/正常甾烷比值的关系图。从图6-17和6-18可以看出本区原油可以划分为两种不同类型的甾烷分布,Grosmont碳酸盐岩,Athabasca和GrandRapids地区的油砂富含短链甾烷,但在其他地区的油砂短链甾烷含量相对较低,这可能分别对应于不同的生物降解阶段或降解模式。

三、油砂沥青芳香烃组成特征

利用芳香烃组分中不同类别化合物的展布可以判断油砂沥青有机质的来源、沉积环境、成熟度以及生物降解程度。烷基苯和烷基萘等低分子量烃类是非生物降解原油芳香烃组分中的优势成分,而在生物降解油中它们往往是最先受影响的成分。图6-19展示了研究区原油和油砂沥青的芳香烃总离子流色谱图,从中可以清楚地区分出三类特征不同的芳烃色谱图:①Mannville组低酸值原油,遭受轻微的生物降解,只有少量低分子量芳烃损失,而富含烷基萘、烷基菲和烷基二苯并噻吩(图6-19A);②PeaceRiver,Wabasca和ColdLake油砂沥青样品芳烃色谱图上低分子量烷基萘大量丧失,含有部分烷基菲和烷基二苯并噻吩化合物(图6-19A,B和C);③Grosmont碳酸盐岩,Athabasca和GrandRapids地区油砂沥青样品遭受严重生物降解,从而使得多数色谱能分辨的低分子量芳烃基本丢失,而形成特征的色谱鼓包。

这些沥青样品部分芳香烃化合物浓度和参数见表6-5。从表中可以看出,原油烷基萘和烷基菲浓度最高,而在严重生物降解的沥青样品中明显降低。反之,三芳甾烷的浓度则在油砂中相对富集。原油中各种烷基萘浓度与原油酸值的关系见图6-20。

图6-19A 艾伯塔代表性原油和油砂沥青样品芳烃总离子流图(IS为标样)

图6-19B 艾伯塔代表性原油和油砂沥青样品芳烃总离子流图(IS为标样)

图6-20 艾伯塔代表性原油和油砂沥青样品烷基萘组分与原油酸值的关系

图6-21 艾伯塔代表性油砂沥青样品芳烃m/z231质量色谱图

图6-21 是所研究样品芳烃m/z231质量色谱图,反映三芳甾烷的分子分布。显然,C26—C28三芳甾烷的分布在所有样品中极为相似,说明它们的油源相近。同时需要指出的是,按照样品中短链三芳甾烷的有无,可以将本区原油和油砂划分为两种不同的类型:①Grosmont碳酸盐岩,Athabasca和GrandRapids地区的油砂不含短链三芳甾烷,但在饱和烃中富含短链甾烷,基本不含正常甾烷;②其他地区的油砂样品短链三芳甾烷相对较高,但在饱和烃中短链甾烷含量相对较低。如前所述,这可能分别对应于不同的生物降解阶段或降解模式。

利用甲基菲指数可以粗略地判断原油的热成熟度。如表6-5所示,根据甲基菲指数计算的第一类原油和油砂样品的源岩镜质体反射率在0.77%~0.88%之间,反映它们是海相烃源岩正常生油窗的产物;然而,第二类原油的数值要么偏高,要么偏低,这可能是严重生物降解的结果。

表6-5 本区样品的芳香烃常见化合物浓度(μg/g)和地化参数

续表

四、艾伯塔原油/油砂沥青和石油酸的官能团组成特征

为了了解艾伯塔原油/油砂沥青和石油酸的官能团组成特征,我们对原油和油砂抽提物、由这些样品分离出的酸性组分及其甲酯组分,分别进行了傅里叶红外光谱分析。表6-6列出了根据不同官能团在傅里叶红外光谱图上的响应特征计算的官能团结构参数。

表6-6 艾伯塔原油/油砂沥青和石油酸的官能团和结构参数

续表

纵观艾伯塔原油/油砂样品的傅里叶红外光谱,它们具有许多相似特征,如极强的脂肪族吸收峰,分别对应于脂肪族基团的伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)。它们存在芳香烃吸收峰(~1600cm-1和900~700cm-1),并在1800~1600cm-1波段出现吸收峰,显示存在含氧化合物。通过酸性组分分离,在获得的酸性组分中对应于脂肪族基团的伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)吸收峰明显减弱,而含氧官能团(1800~1600cm-1波段)吸收峰和芳香基吸收峰(~1600cm-1和900~700cm-1波段)显著增强,显示酸性组分中存在大量的含氧和芳香族化合物。经过酯化,原油/油砂样品酸甲酯组分中芳香族成分大为降低,对应于脂肪族基团的伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)吸收峰仍然明显;但各类含氧官能团(1800~1600cm-1波段)吸收峰显著增强,羰基、多环醌类和苯酚等含氧基团大量富集,硫氧化物成为主要成分。

为了确定实验分析过程中样品分离步骤的可靠性,简化对比参数,我们对表6-6的数据开展了主成分分析(PCA)(表6-7)。从表6-7可见,第一个主成分反映了所有变量44%的信息,而头三个主成分反映了近75%的变量信息。图6-22显示这些样品可以清楚地分为三类:原油/油砂、酸性组分和酸甲酯组分,说明分离效果很好。这些结果,加上酸甲酯组分含量与原油总酸值的线性关系,表明研究获得的酸甲酯组分能够很好地反映原油酸值特征。

表6-7 艾伯塔原油/油砂沥青和石油酸的官能团参数主成分分析结果

续表

图6-23是艾伯塔原油/油砂沥青样品总酸值(TAN)与原油官能团参数的关系图。显然,样品总酸值与原油/油砂沥青样品本身的脂肪度、芳香度和氧化度没有明显的对比性,但随着芳环取代指数1和2,以及硫氧化物基团的增加而增加;随着总酸值的增加,样品的脂肪族分支指数、链长指数和环芳香化指数均有所降低,但在高酸值时变化不显著。

图6-24是艾伯塔原油/油砂沥青样品总酸值与原油酸甲酯组分官能团参数的关系图。显然,在原油遭受轻微生物降解酸值开始增加时,原油/油砂沥青酸甲酯组分样品的脂肪度和氧化度明显增加,而芳香度有所降低;但随着酸值的增加,芳香度有所增加,脂肪度和氧化度又有下降的趋势。艾伯塔原油/油砂沥青样品酸甲酯组分官能团组成的显着特征是很高的硫氧化物基团含量和较高的脂肪族分支指数。

图6-22 艾伯塔原油/油砂沥青和石油酸样品主成分分布

五、艾伯塔原油/油砂沥青酸甲酯组分分子组成特征

1.酸甲酯组分的气相色谱特征

用改性氧化铝吸附柱从原油/油砂沥青样品中分离出的石油酸,在经过酯化、纯化之后,通过气相色谱和色谱-质谱分析研究甲酯化酸性化合物组成。图6-25是艾伯塔代表性原油/油砂沥青样品酸甲酯组分的气相色谱图。显然,高酸值油砂沥青样品中酸甲酯组分的主要成分为所谓的“环烷酸”,即由于存在诸多在常规气相色谱图上无法分辨的复杂混合物而形成的大鼓包。色谱图上能够辨认的主要成分包括正构脂肪酸、δ-正构脂肪酸内酯、苯甲酸、苯二甲酸及三环和五环萜烷酸,未见到甾烷酸。

图6-23 艾伯塔原油/油砂沥青样品总酸值与原油官能团参数的关系

图6-24 艾伯塔原油/油砂沥青样品总酸值与酸甲酯组分官能团参数的关系

2.脂肪酸和脂肪酸内酯

所分析的艾伯塔原油/油砂沥青样品中普遍存在脂肪酸,但与环烷酸的丰度相比,它们仅为微量成分。利用m/z74、m/z88和m/z102质量色谱图可以反映代表正构、α位和β位甲基取代的长链脂肪酸。如表6-8和图6-26所示,正构C16和C18脂肪酸在m/z74质量色谱图中显示较强的相对丰度,非常容易识别。正构脂肪酸分子碳数分布在C9-C34之间,在分析的所有样品中都呈明显的偶碳优势,而异构脂肪酸相对含量较低,分子结构难以鉴定。这些样品中也同时鉴定出C10-C18脂肪酸内酯化合物。后者质量色谱图和质谱图如图6-27所示,具有特征的m/z57、m/z71和m/z85碎片,容易误判为正构烷烃;但它们的质谱图与正构烷烃的显著差别是等高质荷比的碎片强度在m/z85和99之间存在明显的台阶。这些化合物是由β-,χ-或δ-羟基酸分子内脱水而成,在成熟原油中不大可能是原生的。C16和C18饱和脂肪酸在自然环境中普遍存在,而相应的内酯作为抗氧化剂也通常伴生。因此它们有可能来自取样和实验过程的污染,也可能是微生物降解石油时残留下来的生物类酯物。由于这些化合物在原油/油砂沥青中的浓度与样品的总酸值呈正相关关系(图6-28),它们很有可能不是样品污染的结果,而是代表了降解微生物对残余油的直接贡献。

3.芳香羧酸

Watson等(1999)在喜氧微生物降解模拟实验初期原油样品中分离出烷基苯羧酸系列化合物,并认为芳香羧酸是生物降解产物。在艾伯塔沥青样品中都含有芳香羧酸,包括苯甲酸和苯二甲酸,但其烷基同系物却并不常见。

4.萜烷酸

在所分析的艾伯塔原油/油砂沥青样品中普遍存在萜烷酸,包括三环萜烷酸和藿烷酸。所分析样品的m/z191质量色谱图见图6-29。这些化合物具有在C-17和C-21位的三种立体异构体(αβ,βα和ββ)以及C-22位的R和S构型。C30-C32藿烷酸的浓度是用它们在m/z235、m/z249、m/z263质量色谱图上的峰面积与5β-胆甾烷酸标样在m/z217上的峰面积计算的,没有进行响应因子校正(表6-9)。藿烷酸浓度随着样品总酸值增加而增加(图6-30);但在对比关系图上样品点明显散乱,说明影响因素比较复杂。

Meredith等(2000)在一些英国北海TAN0~3mgKOH/g的原油中观察到藿烷酸浓度随着样品总酸值增加而增加,但在TAN>2mgKOH/g时则降低。Behar和Albrecht(1984)在五个成因互不相干的原油样品中则见到藿烷酸浓度随着样品总酸值增加而降低。以往人们将原油中藿烷酸浓度的变化归结为:①与其他化合物降解难易程度的差异;②运移过程中混入成熟度较低的成分;③生物降解油中新生成的藿烷酸之贡献。比较在所分析的样品中藿烷和藿烷酸立体化学构型的差异,结合正构脂肪酸和脂肪酸内酯的明显偶碳优势,我们认为生物降解过程中新生成的酸类贡献可能是造成上述浓度变化的重要因素之一。

图6-25 艾伯塔代表性原油/油砂沥青样品酸甲酯组分气相色谱图(一)

图6-25 艾伯塔代表性原油/油砂沥青样品酸甲酯组分气相色谱图(二)

图6-25 艾伯塔代表性原油/油砂沥青样品酸甲酯组分气相色谱图(三)

表6-8 艾伯塔原油/油砂沥青中正构脂肪酸浓度(μg/g)

图6-26 艾伯塔原油/油砂沥青中正构脂肪酸浓度分布

图6-27 m/z74和m/z85质量色谱图(a-b)及典型正构脂肪酸内酯化合物质谱图(c-d)

图6-28 艾伯塔原油/油砂沥青样品总酸值与正构脂肪酸浓度的关系

表6-9 艾伯塔原油/油砂沥青中藿烷酸的浓度(μg/g)

图6-29 艾伯塔代表性原油/油砂沥青样品酸甲酯组分的m/z191质量色谱图(一)化合物鉴定见表1-5

图6-29 艾伯塔代表性原油/油砂沥青样品酸甲酯组分m/z191质量色谱图(二)

图6-29 艾伯塔代表性原油/油砂沥青样品酸甲酯组分m/z191质量色谱图(三)

图6-30 艾伯塔原油/油砂沥青样品总酸值(TAN)与藿烷酸浓度的关系

石油酸化学组成研究进展

一、概述

国外对原油酸性组分研究起步较早。以往人们对有机酸的研究比较关注,主要是因为羧酸一直被当成是油气从生源母质形成原油的中间产物,而且在有机-无机相互作用的过程中脂肪酸扮演着举足轻重的作用。

原油酸性组分中最早得到结构确认的化合物是饱和环烷酸(Derungs,1956)。环烷酸成分约占原油中全部有机酸的50%或者更高(朱日彰,1991)。按照环的结构类型,可以将原油羧酸分为链状脂肪酸、类异戊二烯酸、单环环烷酸、多环环烷酸和芳香羧酸类(Lochte和Littmann,1955;Seifert和Teeter,1970;表1-2),有时还可能包括无机酸。另外一类可能影响原油酸值的化合物主要为低分子量的弱酸性烷基苯酚类化合物。例如Samadova和Guseinova(1993)发现阿塞拜疆高酸值原油中烷基苯酚类化合物是羧酸类含量的2~7倍。Mckay等(1975)通过对非烃类(含氮化合物如咔唑类,氨基化合物,以及含硫化合物等)进行综合分析,认为Wilmington原油中酸性化合物(质量分数)28%是羧酸,28%是酚类,28%是吡咯类,16%是氨类化合物。这可以大致反映原油中的酸性化合物组成。

原油及石油产品中的高分子有机酸主要是环烷酸,它是一种具有臭味难挥发的无色液体,不溶于水,但易溶于油品、苯、醇及乙醚等有机溶剂。Lochte和Littman(1955)首次对原油中环烷酸的结构进行了解剖,发现环烷酸是石油酸中最主要的成分,其含量可达90%以上。环烷酸相对分子质量较大,分布范围在100~1000之间,碳数范围约在C7-C70之间。环烷酸结构以一环、二环、三环为主,还有一定量的四环、五环的环烷酸。其中主要是一元酸,芳环结构的芳香酸含量很低。炼油实践表明,各馏分油中的酸值随沸程范围而改变,沸程越高,酸值越大,尤其当沸点大于300℃以后的馏分,其酸值急剧上升。因此,环烷酸成分主要集中在300℃以上的重质馏分油中,其平均相对分子质量在300以上,是生产各种油品添加剂的极好原料,如润滑油清净分散剂、防锈剂、燃料油的分散稳定剂等。石油酸含量随原油中环烷烃含量的增加而增加,石油酸含量一般为(质量分数)1%~2%,C6以下为脂肪酸,C7-C10为以环烷酸占绝大多数和脂肪酸的混合物,C10-C14为烷基环烷酸,C14-C20环烷酸主要分布在润滑油馏分中。

表1-2 原油中常见的有机酸类型(甲酯化)

随着地球化学测试技术的发展,人们对原油中有机酸成分的认识逐渐深入。Tomczyk等(2001)报道了取自SanJoaquinVallay的原油石油酸类型分布。原油经历过喜氧生物降解(TAN=5.19mgKOH/g),通过萃取分析甲酯化的酸性组分发现其中40%(质量分数)并不是羧酸,只有10%的酸性化合物含有两个氧原子(羧基),同时大约50%的羧酸含有氮杂原子和25%的羧酸含有硫原子。像硫醇等酸性含硫化合物容易消失,这是因为它们很容易在空气中被氧化。以往有人曾经提出来源于微生物的氨基酸可能是原油中酸性组分的主要来源。

电喷雾(ESI)傅里叶变换离子回旋共振(FT-ICR-MS)质谱技术的发展为石油酸的分析提供了一种新途径,Qian等(2001)通过高分辨率质谱分析南美重油样品,发现该样品中一元酸碳数分布范围为C15—C55,有1~6个脂肪环和1~3个芳环。在原油中已鉴定出的酸性组分包括O1、O2、O3、O4、N、N2、NO、NO2、SO、SO2、SO3、O2S和NS等多种杂原子组合,酸性化合物分子量分布范围一般在200~1000Da之间(Hughey等,2004,2007;Kim等,2005;Rogers,2005),表明其成分复杂。因此,单纯用常规气相色谱和气相色谱-质谱技术研究酚类和烷基酸等高挥发性成分无法完全了解原油酸性组分的真实面貌。

不同文献中石油酸的组成数据差异较大,原因之一是采用了不同的实验分析方法,而更重要的是不同原油样品中石油酸组成各不相同。最近的一些研究工作主要是针对石油酸实验方法先进性的描述,缺乏对原油中石油酸组成的系统研究。

二、原油酸性组分与原油总酸值的相关性

表1-3为作者在加拿大地质调查局分析的原油样品中酸性组分(AF)和酸甲酯组分(FAMES)含量。如图1-2所示,除了从塔里木盆地取得的3个原油样品(TK101、S48和TK713)因酸化压裂影响了总酸值测定结果之外,所有其他从原油中分离出的酸甲酯组分含量(FAMES)与原油总酸值(TAN)具有很好的对应关系(r2=0.76)∶TAN(mgKOH/g)=0.5756×FAMES(mg/g)。同时,傅里叶红外光谱分析表明,甲酯化前的酸性组分中含有大量极性芳香族成分,导致原油酸性组分含量(AF)与原油总酸值(TAN)相关性很差。

表1-3原油酸性组分(AF)和酸甲酯组分(FAMES)含量

续表

图1-2 从中国、苏丹和加拿大原油中分离出来的酸甲酯组分含量FAMES)与原油总酸值(TAN)的对比关系

由于油砂抽提物黏度超出常规总酸值测定方法所适用的技术范畴,因此无法从商业实验室得到其总酸值数据。为弥补这项缺陷,初步采用酸甲酯组分含量(FAMES)与原油总酸值(TAN)的相关性来计算油砂抽提物的总酸值(表1-4)。

三、石油酸的官能团组成

为了解石油酸官能团组成特征,作者对一些原油/油砂抽提物及其分离出的酸性组分和酸甲酯组分,分别进行傅里叶红外光谱分析。图1-3为不同研究区代表性原油/油砂抽提物全油、酸性组分及酸甲酯组分傅里叶红外光谱图。

表1-4 油砂抽提物的酸性组分(AF)和酸甲酯组分(FAMES)含量以及原油总酸值(TAN)计算结果

图1-3 苏丹代表性高酸值原油(TAN=4.68mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(一)

图1-3 苏丹代表性低酸值原油(TAN=0.15mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(二)

图1-3 中国渤海湾盆地代表性高酸值原油(TAN=3.39mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(三)

图1-3中国渤海湾盆地代表性低酸值原油(TAN=0.39mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(四)

图1-3 西加拿大盆地代表性高酸值原油(油砂抽提物;TAN=15.40mgKOH/g)全油(a)、酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(五)

图1-3 西加拿大盆地代表性低酸值原油(TAN=0.23mgKOH/g)全油(a)酸性组分(b)及酸甲酯组分(c)的傅里叶红外光谱图(六)

(一)原油/油砂样品

如图1-3所示,原油/油砂样品均显示出相似的傅里叶红外光谱特征,具体表现在:①极强的脂肪族吸收峰,分别对应于脂肪族基团伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1);②存在芳香烃吸收峰(约1600cm-1和900~700cm-1);③部分样品在1800~1600cm-1波段出现吸收峰,显示存在含氧化合物。

(二)原油/油砂样品中分离出来的酸性组分

如图1-3所示,原油/油砂样品酸性组分与原始原油/油砂样品相比,对应于脂肪族基团伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)吸收峰明显减弱,而含氧官能团(1800~1600cm-1波段吸收峰)和芳香基吸收峰(约1600cm-1和900~700cm-1波段)显著增强,显示酸性组分中存在大量的含氧和芳香族化合物。

(三)原油/油砂样品中酸性组分甲酯化产物

如图1-3所示,经过酯化,原油/油砂样品酸甲酯组分与原油酸性组分相比,芳香族成分大为降低;对应于脂肪族基团伸展(3100~2800cm-1)、弯曲(1460和1377cm-1)和旋转振动(720cm-1)吸收峰仍然明显;但各类含氧官能团(1800~1600cm-1)吸收峰显著增强,羰基、多环醌类和苯酚等含氧基团在苏丹高酸值原油酸甲酯组分中大量富集。渤海湾盆地原油酸甲酯组分中则缺少多环醌类,而西加拿大高酸值油砂抽提物酸甲酯组分中硫氧化合物为主要成分。

原油酸值与原油本身及其酸甲酯组分的傅里叶红外光谱所反映的有机官能团特征的关系将在后续的章节中分地区展开讨论。

四、高分辨率质谱揭示石油酸元素组成与化合物类型

原油中酸性化合物相对分子质量一般不大于1000,主要分布在200~800之间,对应分子碳原子数一般分布在C10-C60,不同原油中酸性化合物相对分子质量存在较大差异,平均分子质量分布在420~550之间。下面以辽河油田欢127井原油的高分辨率质谱为例,说明石油酸元素组成与化合物类型研究方面的相关进展。图1-4a是该原油傅里叶转换质谱图,横坐标是质荷比,纵坐标为相对丰度;图1-4b和图1-4c为图1-4a的局部放大。在图1-4b中可以看到相差14.01565个质量单位的质谱峰系列,这些化合物具有相同的杂原子数量而相差不同个—CH2—亚甲基单元,只要鉴定出其中的一个分子组成,其他化合物很容易得到鉴定。通过精确分子质量可以在10-6误差范围内确定化合物分子式。同时,根据相邻同位素质谱峰强度,可以验证鉴定结果的可靠性及是否有不同化合物重叠在一起。图1-4c中8号峰即为4号峰的13C同位素峰。

(一)原油高分辨率质谱资料解释

由高分辨率质谱分析结果可以得到三个层次的组成信息(以欢127井原油为例,如图1-5所示):分子组成类型,即分子中C、H、O、N、S等原子的组合方式,一般将主要元素(C和H)的组成表示为分子缩合度及分子量大小,根据分子中含O、N、S杂原子组成不同的类型(如图1-5a),表示不同杂原子类型化合物的相对丰度;相同类型化合物根据分子不饱和度,即分子中双键和环的数目分为不同的组,而用分子通式CnH2n+ZOoNnSs中Z值大小反映同一类型不同缩合度化合物相对分布(图1-5b);对于同一组化合物,分子组成中相差n个—CH2—,其分布特征反映该组化合物分子量分布(如图1-5c)。石油酸性组分除常规的含有O2分子结构类型外,还有N1、NO、N1O2、O1、O3和O4等多种杂原子类型;O2类化合物分子缩合度分布范围在0(脂肪酸)~-34之间;不同缩合度化合物相对丰度趋于正态分布,但每一种缩合度化合物碳数分布规律并不一致。

图1-4 欢127井原油Neg-ESI-FTMS质谱图

当实验使用仪器磁场强度为7.0T时,在450Da质量数附近可得到大约100000的分辨率。这种分辨能力并不能精确分析出原油中所有化合物分子式构成,但对丰度相对较高的化合物仍然能够得到比较可靠结果。为保证解释结果的可靠性,可以仅对相对丰度较高的N、NO、NO2、O、O2、O3、O4类化合物进行定性,以这些化合物在质谱图上的相对丰度作为依据半定量地确定它们的相对含量。

如图1-5所示,O1类化合物在大部分样品中含量不高,但个别样品中O1类的相对丰度超过O2,鉴定出的CnH2n+ZO类化合物中Z值最大值一般为-6,而这一缩合度正好和烷基酚类一致。由于人们已经证实石油中普遍存在苯酚类化合物,因此可以确定原油中O1类化合物主要为酚类,即O原子以羟基的形式联结在芳环上。

图1-5 高分辨率质谱反映的化合物组成信息

O2类化合物在大多数原油中丰度显示最强,分子通式为CnH2n+ZO2的化合物Z值分布在0~-34之间。分子中含有两个氧原子的化合物可能为羧酸或者二元醇。由于醚和酮在负离子ESI条件下难以电离,因此原油中O2类化合物分子中至少含有1个羟基。同时,由于二元醇的最小分子缩合度为Z=2,而原油样品中见到的Z值最大为0,故此可以推断原油中O2类化合物以羧酸为主。

O3和O4类化合物在石油中含量一般较低,分子中含有1个羟基和1个羧基,或2个羧基。由于在负离子ESI模式下O3和O4类化合物的鉴定需要考虑小分子O1和O2在两个O2之间缔合的因素(Smith等,2006),对这些化合物类别的鉴定需要慎重。

由于碱性氮化物在负离子ESI条件下不能被电离,原油样品高分辨率质谱中见到的N类化合物主要是非碱性氮化物。利用常规色谱-质谱等手段在石油及石油产品中鉴定出的非碱性氮化物主要有吡咯、吲哚、咔唑和苯并咔唑等,但前两者稳定性差,一般不会在原油中存在。反映N类化合物分子缩合度的Z值最大值一般为-15,这一数值与烷基咔唑对应;从热力学稳定性角度分析,Z=-15的N类化合物也最可能是咔唑。同时,N类化合物在大部分原油中表现出Z=-21和Z=-27优势,两者正好与苯并咔唑和二苯并咔唑类化合物的分子组成一致。因此可以推断,原油中N类化合物主要为吡咯类非碱性氮化物。N类化合物Z值下限为-43,但主要分布在-15~-27之间,即分子缩合度介于咔唑和二苯并咔唑之间。

NO和NO2类化合物可解释为氮化物分子上另带有1个羟基或羧基,但由于缺乏这些化合物单个分子组成数据,目前尚无法对它们结构类型明确定性。

(二)根据石油酸元素组成与化合物类型进行原油分类

作者研究了来自中国辽河、渤海、塔河、新疆和苏丹等油田的原油样品,发现所有样品中都含有N1和O2化合物,在大多数原油中二者之和占已定量的O2、N1、NO、N1O2、O1、O3和O4等7类化合物相对丰度的80%以上,而且不同原油之间存在明显差异。以O2为例,其相对丰度占7类化合物的1%~93%之间;同时,在不同类型化合物相对丰度接近的原油,它们的石油酸分子缩合度和碳数分布也存在很大差异。根据高分辨率质谱揭示的杂原子类型、缩合度、碳数分布,我们将原油分为5种类型。下面分别描述不同组成类型的石油酸组成特征。

1.A类原油

环烷酸占绝对优势,以一—三环环烷酸为主。代表性样品为新疆9区浅层原油,油藏深度为618~606m,原油总酸值10.7mgKOH/g。其O2类化合物碳数分布如图1-6所示。多数高酸值原油具有A类组成特征,O2类相对丰度占50%以上,脂肪酸含量较低或很低,环烷酸一般以二环为主,一环和三环也有较高相对丰度,主峰碳出现在C25附近。

图1-6 A类原油O2类化合物的碳数分布图

2.B类原油

环烷酸占优势,以四-五环环烷酸为主。根据O2类化合物Z值分布图中Z=-8和Z=-10两条曲线的分布特征将B类原油分为两个亚类。

其中,B-1亚类原油中四环和五环环烷酸在O2类化合物中占绝对优势,在较宽碳数范围内四环和五环环烷酸均为主要的O2类化合物。代表性原油样品采自辽河油田清5井,储层深度为2050.6~2073.1m,原油总酸值为1.86mgKOH/g,其O2类化合物碳数分布见图1-7。

图1-7 B-1类原油O2类化合物的碳数分布图

B-2亚类原油中低碳数区域低缩合度环烷酸为主,而在C30和更高碳数区域四环和五环环烷酸优势明显。代表性原油样品为辽河油田洼70井沙三段储层,储层深度为1434.3~1457.6m,原油总酸值为4.48mgKOH/g。其O2类化合物碳数分布见图1-8。

图1-8 B-2类原油O2类化合物的碳数分布图

四环和五环环烷酸对应的Z值为-8和-10,但Z=-8和-10的化合物也可以是芳羧酸,高分辨率质谱并不能区分这两类化合物的结构类型,虽然B-1和B-2亚类原油均以Z=-8和Z=-10两类化合物为主,但后者的O2碳数分布在Z=-8和Z=-10两条曲线上,在高于C30后有一明显突跃,可能与较高丰度的四环和五环环烷酸有关,五环环烷酸可能主要是藿烷酸,而四环环烷酸可能与甾烷酸(或其异构体)有关。

3.C类原油

C类原油有机酸以脂肪酸为主,根据原油中含N和O2类化合物的相对丰度,将C类原油分为两个亚类。

C-1亚类原油,O2类化合物占绝对优势,且以脂肪酸为主。代表性样品为辽河油田高101井2168.6~2162.9m井段的原油,原油总酸值为3.76mgKOH/g。其O2类化合物碳数分布见图1-9。

图1-9 C-1亚类原油O2类化合物的碳数分布图

C-2亚类原油中N类化合物占优势,含有较多的NO和NO2类化合物,O2以脂肪酸为主。代表性样品为辽河油田曙116井3996~4050m井段原油,原油总酸值为11.9mgKOH/g,O2类化合物碳数分布特征与C-1亚类原油相似。

C类原油脂肪酸相对丰度远高于环烷酸,显示C16和C18脂肪酸优势,但并不一定是主峰,高碳数脂肪酸分布范围较宽且具有较强相对丰度。该类原油FTMS谱图中N类化合物丰度有高有低,大部分N丰度高的样品含有较高丰度的NO和NO2类化合物。

4.D类原油

D类原油中含氮化合物丰度与含氧化合物相比占绝对优势,以N1类化合物为主。代表性样品为塔河油田S77井5965~6000m井段原油,原油总酸值为0.77mgKOH/g,其O2类化合物碳数分布见图1-10。其中O2类化合物含量很低,Z=0和Z=-2曲线显示明显的C16和C18优势。

图1-10 D类原油O2类化合物的碳数分布图

5.E类原油

E类原油含有大量卤代烃。代表性样品为塔河油田TK101井4557~4563m井段原油,原油总酸值高达20.0mgKOH/g,其O2类化合物碳数分布见图1-11。

质谱图中出现很强的间隔58个质量单位的峰簇,峰簇中峰数量、相对丰度以及相关两个质量单位的分布特征均与卤代烃的特征一致,但这些化合物的精确分子组成尚不能确定。该类原油虽然表现很高的酸值,但O2类化合物丰度很低,分布特征与低酸值的D类原油相似。

图1-11 E类原油FTMS质谱图

几种代表性原油的杂原子类型、O2类缩合度分布、N1类缩合度分布图分别如图1-12~图1-14所示。石油酸杂原子类型复杂,主要有N、NO、NO2、O、O2、O3和O4等杂原子类型,其中N和O2是丰度最高的化合物类型,不同类型化合物的相对丰度在不同原油中差异明显。如果不考虑地质因素,原油总酸值与其中某一石油酸化合物的含量之间没有明显的相关性。

图1-12 典型原油石油酸杂原子组成

五、酸性含氧化合物的分子组成

(一)研究现状

含氧化合物组成能够为研究原油成因及生物降解作用提供重要信息,这早已引起研究者的关注。虽然在一些沉积物或低熟原油中鉴定出了很多化合物类型,然而关于原油中含氧化合物的组成至今仍不是十分清楚,主要有两个原因:一是含氧化合物分离困难,原油中含氧化合物含量很低,分子量分布及极性差异很大,传统的分离方法很难在保证回收率的前提下实现高纯度分离;另一方面原因是没有合适的分析表征手段,含氧化合物(如羧酸)极性较强,色谱分析前需要衍生化处理,气相色谱是目前分离单体化合物最有效手段,但只能分析原油中分子质量相对较小的化合物,同时含氧化合物异构体种类繁多,即使在高效毛细管气相色谱柱上也不能得到单体分离。

图1-13 典型原油石油酸中O2类化合物缩合度分布

图1-14 典型原油石油酸中N1类化合物缩合度分布

石油酸组成是近年来石油化学研究热点之一。最新有关石油酸的研究成果主要基于质谱技术对其分子类型分布的结果,通过软电离质谱得到石油酸的组成特点及分布规律。由于石油酸组成非常复杂,研究石油酸单体化合物的文献较少,分析手段一般为气相色谱—质谱法。

目前从原油中已经鉴定出的含氧化合物包括醚、醇、酮、羧酸、酚及酯类化合物,一些杂环含氧化合物(如二苯并呋喃)富集在芳烃样品中,非常容易检出,其他含氧化合物的分离比较困难;小分子苯酚类化合物近年来被用于石油运移研究,大部分C0—C3苯酚单化合物已经通过标样得到准确鉴定;醇、酮类化合物在原油中含量很低,目前主要对正构脂肪族醇、酮进行了结构鉴定。

羧酸类化合物是原油中含量最丰富的含氧化合物,相关研究报告最多。丁安娜等(2004)在大庆原油中鉴定出正构一元酸(C10—C33)、正构二元酸(C10—C25)、姥鲛烷酸、植烷酸、藿烷酸(C30—C33)和甾烷酸(C27—C29)等多种酸性化合物类型;在一些低熟原油、生物降解原油(Jaffé和Gallardo,1993)、沉积物(Azevedo等,1994)或沥青质钌离子氧化产物(王培荣,2002)中存在相对丰度较高的甾、萜类羧酸化合物。

(二)高酸值原油中含氧化合物结构鉴定

高酸值原油石油酸经改性氧化铝吸附柱分离,通过气相色谱-质谱分析甲酯化酸性化合物组成,典型石油酸甲酯的总离子流色谱图如图1-15所示,3个样品谱图特征分别对应不同酸值的代表性原油。不同原油的石油酸组成差异很大,本节中所鉴定出的羧酸类化合物实际是其对应的甲基酯。鉴定出的单体化合物主要有脂肪酸、环烷酸、芳羧酸和内酯类等几种类型。

图1-15 典型石油酸甲酯总离子流色谱图(IS-1和IS-2为内标;C12-C24为正构脂肪酸;X为污染峰)

1.脂肪酸

根据FTMS质谱分析结果,石油酸分子式CnH2n+ZO2中Z值为0的化合物主要对应脂肪酸类,原油中普遍存在脂肪酸,但与环烷酸的相对浓度差异很大,辽河油田高1井原油中CnH2n+ZO2类化合物相对含量十分丰富,其脂肪酸甲基酯的质量色谱图如图1-16所示。m/z74、m/z88和m/z102分别代表正构、α位和β位甲基取代的长链脂肪酸,正构C16、C18脂肪酸在m/z74质量色谱图中显示较强的相对丰度,非常容易识别,正构脂肪酸分子碳原子数分布在C9—C34之间,大部分原油中都呈偶碳优势。姥鲛烷酸和植烷酸分别为m/z88和m/z102质量色谱图上的基峰。类异戊二烯类长链羧酸在几个低熟原油样品中含量很高,碳数分布在C17—C21之间,其他异构脂肪酸相对含量较低,分子结构难以鉴定。

图1-16 高1井原油脂肪甲酯质量色谱图

在一些脂肪酸含量较高的样品中鉴定出C16和C18不饱和脂肪酸,后者质量色谱图如图1-16所示,C16、C18不饱和脂肪酸在FTMS分析时可以看到Z=-2系列化合物异常的碳数分布,这些化合物理论上不应该存在于成熟原油中,可能来自取样和实验过程的污染,因为这两种化合物在自然环境中普遍存在。如果C16与C18不饱和脂肪酸是由污染带入,那么正构C16和C18的含量也可能存在不确定性,因为这两种化合物和不饱和脂肪酸一样容易由污染引入,而不同实验室间关于这两个化合物较差的实验重复性也可以作为这一推论的依据。

2.芳羧酸

关于芳羧酸的文献报道很少,Haug等(1968)在GreenRiver页岩抽提物中鉴定出一环和二环几个芳羧酸系列,Watson等(2002)在实验室中模拟石油生物降解过程,在降解初期的原油样品中分离出烷基苯羧酸系列化合物,认为芳羧酸是生物降解产物。在作者研究的样品中发现部分样品富含芳羧酸,如:渤海湾盆地PL19-3-2井DST2层、辽河油田兴603井等。芳羧酸的类型很多,包括一—五环的芳香酸,芳基骨架结构与芳烃化合物相对应。图1-17~图1-24为辽河油田兴603井原油中芳羧酸的质量色谱图,分别为烷基苯甲酸、烷基萘羧酸、三环芳羧酸、四环芳羧酸、五环芳羧酸、单芳甾烷酸及三芳甾烷酸。烷基苯类羧酸分布范围最宽,在质量色谱图中能够清晰地确定C0—C18烷基苯羧酸系列。

图1-17 烷基苯甲酸酯质量色谱图

图1-18 烷基萘羧酸酯质量色谱图

图1-19 烷基三环芳羧酸酯质量色谱图

图1-20 烷基四环(芘类)芳羧酸酯质量色谱图

3.环烷酸

图1-23~图1-25是常见环烷酸的质量色谱图。藿烷酸是较早被发现和鉴定的具有分子标志意义的一类重要酸性化合物,藿烷酸的形成被认为是藿烷遭受生物降解的产物,未降解原油一般不含藿烷酸,随着生物降解程度的增加,藿烷酸含量增加,而当生物降解非常严重时藿烷酸遭降解而消失。以前的研究表明,藿烷酸存在于生物降解原油中,而未降解和严重降解原油中藿烷酸含量较低。在我们研究过的绝大部分原油样品中均检测出藿烷酸,但它们的相对组成有较大变化。

图1-21 烷基四环(类)芳羧酸酯质量色谱图

图1-22 烷基五环(苯并芘类)芳羧酸酯质量色谱图

图1-23 单芳甾烷酸酯质量色谱图

图1-24 三芳甾烷酸质量色谱图

图1-25 三环萜烷及藿烷酸质量色谱图对应化合物鉴定见表1-5

表1-5 藿烷酸鉴定表

续表

4.内酯类化合物

在加拿大西部盆地大部分油砂样品中鉴定出了C10—C18脂肪酸内酯化合物,这些化合物的质量色谱图如图1-26所示,具有特征的m/z57、m/z71和m/z85碎片,容易误判为正构烷烃;但它们的质谱图与正构烷烃的显著差别是等高质荷比的碎片强度在m/z85和m/z99之间存在明显的台阶。这些化合物是由β-、χ-或δ-羟基酸分子内脱水而成在成熟原油中不大可能是原生的。

图1-26 内酯类化合物m/z85质量色谱图及质谱图

六、石油酸的二维色谱/质谱鉴定

二维色谱技术是国外在20世纪90年代早期开始研发的新兴分析技术(Phillips和Liu,1992)。这项技术最先运用于环境样品分析,通过采用二重色谱联用,使得色谱分析复杂混合物的能力得到极大的改进(Dalluge等,2003;Zrostlikova等,2003)。使用飞行时间质谱检测器,质谱图采集的速度可以达到每秒500张,进而满足样品分析时数据快速采集的要求。将这些色质的硬件条件与专用的质谱去褶合软件相结合,就可以得到分析过程中分离的单个化合物的质谱图。由于原油酸甲酯组分成分极为复杂,Hao等(2005)首先用加拿大合成油公司、Acros和Fluka公司的三个商业环烷酸样品进行了方法试验。

图1-27 Fluka环烷酸标样的二维色质重建总离子流色谱(下)和无环正构脂肪酸二维质量色谱图(上)

前人对商业环烷酸样品在甲酯化和季丁基甲基硅烷化后进行一维色质分析,重建总离子流色谱通常表现为一个大鼓包,无法分开三家公司生产的三个环烷酸样品。但是,运用二维色谱技术,我们可以得到许多分辩效果较好的色谱峰(图1-27)。从图1-27可以看出,利用特征的m/z87、m/z101、m/z115、m/z129和m/z143质量色谱图,可以检测各类无环正构脂肪酸(Z=0)的同系物分布。这里,由于m/z74质量色谱图强度较低,噪音明显,没有加入重建质量色谱图中。同样,利用m/z127、m/z141、m/z155、m/z169、m/z183、m/z197、m/z211、m/z225和m/z239质量色谱图,可以检测各类单环长链脂肪酸(Z=-2)的同系物分布(图1-28)。而且,三种环烷酸标样在这些化合物分布上的指纹特征是显著不同的。通过选取特定(X,Y)保留时间的化合物质谱图,并利用谱库检索,可以对这些化合物进行结构定性(图1-29)。运用二维色质,很难将这些环烷酸样品中的二环及其多环脂肪酸类(Z=-4,-6和-8)完全分离成单个化合物,进而提供足够的结构信息。实际运用二维色质分析原油和油砂样品,尚需要大量的实验室方法试验工作。

图1-28 三种环烷酸标样的二维色质无环正构脂肪酸(Z=0)和单环长链脂肪酸(Z=-2)的重建质量色谱图

图1-29 环烷酸标样的二维色质无环正构脂肪酸(Z=0)和单环长链脂肪酸Z=-2)的重建质量色谱放大图及单个化合物的质谱图

今天的傅里叶红外光谱分析文献有关的说明就先聊到这里啦,想指导更多有关于傅里叶红外光谱图分析的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624
YP官网